Exploratory analysis

Data visualization, part 1. Code for Quiz 7.

  1. Load the R package we will use.
  1. Quiz questions
  1. Plot preview

Question: modify slide 34

ggplot(faithful) + 
  geom_point(aes(x = eruptions,
                 y = waiting,
                 colour = waiting > 76))

ggsave(filename = "preview.png",
       path = here::here("_posts", "2022-03-11-exploratory-analysis"))

Question: modify intro-slide 35

ggplot(faithful) +
  geom_point(aes(x = eruptions,
                 y = waiting),
             color = 'purple')

Question: modify intro-slide 36

ggplot(faithful) + 
  geom_histogram(aes(x = waiting))

Question: modify geom-ex-1

ggplot(faithful) + 
  geom_point(aes(x = eruptions,
                 y = waiting),
             shape = "asterisk", size = 8, alpha = 0.7)

Question: modify geom-ex-2

ggplot(faithful) + 
  geom_histogram(aes(x = eruptions, fill = eruptions > 3.2))

Question: modify stat-slide-40

ggplot(mpg) + 
  geom_bar(aes(x = manufacturer))

Question: modify stat-slide-41

mpg_counted  <- mpg %>%
  count(manufacturer, name = 'count')
ggplot(mpg_counted) +
  geom_bar(aes(x = manufacturer, y = count), stat = 'identity')

Question: modify stat-slide-43

ggplot(mpg) + 
  geom_bar(aes(x = manufacturer,
               y = after_stat(100 * count/sum(count))))

Question: modify answer to stat-ex-2

ggplot(mpg) + 
  geom_jitter(aes(x = class, y = hwy), width = 0.2) +
  stat_summary(aes(x = class, y = hwy), geom = "point", 
               fun = "median", color = "orange", shape = "square", size = 9)